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We study the photoproduction of the so-called Z°, conjectured in certain theories of the
weak interactions, in the limit of incident photon energy much larger than the Z° mass and
the momentum transfer to the target. The incident photon creates a lepton-antilepton pair
which exchanges photons with the target before combining to form the Z%, The Z° generally
has both charge conjugation +1 and —1, so we study both one- and two-photon exchange. The
latter is essentially a generalization of Delbriick scattering. The amplitudes are complex
due to the leptonic decay of the Z°. If the unknown couplings are not much bigger than the
electric charge, then our quantitative results will be extremely small due to the large Z°
mass, even in the limit of infinite energy. We also sum over all exchanged photons, obtain-
ing a well-known form for the amplitude, which may merit further study in the context of

photoproduction.

I. INTRODUCTION

Much work has been concentrated on the asymp-
totic properties of quantum electrodynamics in
attempts both to test the theory® and to find qual-
itative ideas which might apply to strong inter-
actions.? It is interesting to consider such ques-
tions in the context of renormalizable Weinberg-
Salam models which unify weak and electromag-
netic interactions in spontaneously broken gauge
symmetries.® The electron, muon, and photon
become members of gauge multiplets involving a
large spectrum of charge, mass, and spin states.
These may cause deviations in the tests of “iso-
lated” quantum electrodynamics and may shed
some light on its qualitative features as well.

If charged vector bosons W * are exchanged in
the known weak processes, then a neutral lepton
L° or a neutral vector boson Z° must be exchanged
in e*e” - W*W ~ if the Froissart bound is to be
satisfied.? Existence of the Z° would change the
electromagnetic interaction Lagrangian to

Lom=-Llen A’ +(gv —gavu 2*1L, (L1

where L is a lepton field of charge e, A and Z are
the photon and Z° fields, and g, and g, are model-
dependent constants.

In order to really know if the Z° exists, one
would like to produce it and detect its decay prod-
ucts. It can be electromagnetically produced in
two ways. In colliding electron beams one has®
e*e” -~ Z° and in photon beams on nuclear targets
one has yN— Z°N. Here we study the high-energy
behavior of the photoproduction process, neglect-
ing the nuclear structure. This generalizes pre-
vious results for ye elastic and Delbriick scatter-
ing® by giving the final photon a2 mass” and also an
axial coupling.
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It should always be kept in mind that the Z° mass
will be at least on the order of a few GeV.® This
will have significant effects on (a) the required
incident energy, (b) the range of momentum trans-
fers involved, (c) the role of the nucleus, (d) the
size of the cross sections, and (e) the decay.

This paper is organized as follows. Section II
summarizes the relevant kinematics and the in-
finite-momentum technique. Sections III and IV
give the derivations of the one- and two-photon
amplitudes. Section V is a discussion of results
and various extensions. Finally, evaluation of
some traces and discussion of numerical details
are given in Appendixes A and B.

II. KINEMATICS

The general Z° photoproduction process is shown
in Fig. 1. A photon of four-momentum ¢ is incident
upon some target of four-momentum p and mass
m, producing a Z° of four-momentum ¢’ and mass
M plus missing mass m’. In the laboratory the
photon energy and the energy transferred to the
target are given by

s -m?
w:
2m

s (2.1)

m'2-m® -t

v (2.2)
respectively, where s =(p +q)? is the total center-
of-mass energy squared and t=(q’ - ¢)° is the
center-of-mass momentum-transfer squared. The
primary question here is whether the Z° can be
produced even under ideal conditions. So we con-
sider the limit w -, with the other variables held
fixed. Corrections of O(M/w) will tend to decrease
the result.
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FIG. 1. The general Z° photoproduction process.

A. Scales for the momentum transfer

In the forward direction ¢ is given by

2
i = —MZ(’f—wz%) : (2.3)
In terms of the natural variable ¢{/M?, we have
elastic scattering when t/M? ~ O(M?/«?), pion pro-
duction when ¢/M? ~ O(m,/w), and a third region

in which ¢/M? ~ O(1). Which region is of interest
depends on the backgrounds to the possible Z°
decays, and all possibilities should be considered.
There will be a peak in the forward direction as

in Delbriick scattering, growing like In?(w) due to
virtual production of lepton pairs in the photon. In
this study we concentrate only on such photon-ex-
change contributions to Fig. 1. To lowest order
in the fine-structure constant o and to all orders
in Za, where Z is the number of unit charges in
the target, the process involves a single lepton
loop as shown in Fig. 2.

Photon-exchange processes are also of interest
outside the ¢, region. Larger ¢ values may be
helpful in eliminating some background, and may
provide qualitative ideas for more general Comp-
ton-type processes. Here we study the region
t/M?~0(1). As t/M? -0 the result must join
smoothly with the forward behavior, so that

% 1% t/M2) = 10%(= £, /M?) . (2.4)

For a given value of ¢ we imagine integrating
over all accessible values of m’2 or v. The elec-
tron-proton inelastic experiments® indicate that
the result may be on the same order as the point-
like process. Information on the region interme-

FIG. 2. Multiphoton exchange contributions to Fig. 1.

diate between the forward and scaling regions will
depend on details of the target. These may well be
important, but we make no attempt to include them
at this stage. As a first step, then, we study the
pointlike process ye — Z°.

B. Infinite-momentum technique

We choose the three-axis in the direction of the
incident beam and, instead of writing four-vectors
as p =(py, P1, b2, P3), use the plus-minus compo-
nents!®

P=(Po+Pa,PuPz,Po-P3)=(/’+, ﬁyp-) . (2-5)

The notation P will always indicate a two-vector
transverse to the three-axis. In terms of these
components the Dirac matrices obey

{r., 7}=0,
Yi¥a¥s =4V, (2.6)
7,2=0,
and the scalar product becomes
by D2 =5 (BriPo- +D1-b2s) =Dy Do - (2.7)

The scalar product is clearly invariant under the
scale transformation

P"(ﬁp/ﬂ,ﬁ,ﬁ-ﬂ) ’ (2'8)

which is equivalent to a boost along the three-axis
with rapidity £ =1n(n).

The central advantage of the p, variables in 2 -2
processes at high energy is the fact that in the
center-of-mass frame, one particle carries only
a large p, and the other carries only a large p_.
Since the momentum transfer tends to be small
and purely transverse, this separation between p,
and p_ tends to be unaffected by the interaction.

The center-of-mass frame is shown in Fig. 3,
with the beam directed along the three-axis with
momentum

_s—mz_ m? 1/2_ .
qs——zvg-——w(s ) =@, (2.9)

A
Xy

A
X2

FIG. 3. The center-of-mass frame.
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In the notation of Eq. (2.5) we have
7=(2,0,0),

mw = m
p—(w 0;0))

(2.10)

so the beam has only large g, and the target has
only large p_. (The apparent dependence on m
eventually cancels for pointlike targets.) If the
four-momentum transfer is written

k=p'=p, K=t , (2.11)

then the mass-shell conditions for ¢’ and p’ imply

M? - k?
q+

B-p.k_ )
p-

If we require

2
-M—<<|E|<<w,
w

k_:

k,=

(2.12)

then &, can be neglected and we have
t=-k2.

Condition (2.12) will be assumed true here.

When ¢ is finite and transverse, the s dependence
of photon-exchange amplitudes can be scaled out
with Lorentz transformations as in (2.8). The in-
coming momentum g (or p) is finite in a frame
moving with the photon (or target). For example,
the matrix element for one-photon exchange has
the form

(2.13)

M, =Au(q, k) 7z B (%, p) . (2.14)

k2 +i€
Here A may be evaluated by boosting with rapidity"*

’=1n(q,) so that A=(A!q,.,A,A"/q,), where A/, is
finite. Similarly B may be evaluated by boosting
with rapidity £’/ =In(1/p_) so that B=(B"//p_, B,
B”p_), where BY is finite. Then we have

AuB"=%q+p_Aj,B'_'+2q 5 A'BY-K-B

N
=mwl[AlBY+0(1/mw)] . (2.15)
Inthe frame defined by &’ the arguments of A are
7=(1,5,0),
k=(0, k, &2 +M?),
(2.16)

where &, ~0(1/2mw) and k_ is fixed by ¢q’2=M?2.
In the frame defined by £’/ the arguments of B are

k=(E2’ E; 0)9
P=(m2, 6: 1),

(2.17)

standard frame for the photon{

standard frame for the target {

where k_~0(1/2mw) and k&, is fixed by p’2=m?,
When z photons are exchanged, Eq. (2.15) applies
to each pair of indices, so that

Ayeoey, B Bn=(mw)[AL.. B . _

+0(1/mw)], (2.18)
and there are n -1 integrations:
2
dtp, = Pi= ki Ry (2.19)
2mw

so the result is still linear in w.

This simple factorization of the energy depen-
dence breaks down near {;, when 2, become im-
portant, but as long as (2.12) holds, all calcula-
tions may be done in terms of the energy-indepen-
dent momenta in the standard frames.

Two additional standard-frame results are need-
ed. Firstly, if u, is a Dirac spinor of helicity A,
then in the target frame one has

(2.20)

so that the target helicity is always conserved.
Secondly, if eu(r) is a spin-one polarization vector
with four-momentum 7, then in the photon frame
one finds

@hy_uy=8\/m,

€,(n)=(0,&,,2F€,,),

€(7r) =~ 2M(0, 0 ,1)+7r/M, (2.21)
where the transverse helicity vector is
1 ,
3¢1=*ﬁ (1, £4) , (2.22)

and M is the mass.

III. ONE-PHOTON EXCHANGE

The one-photon exchange term of Z° photopro-
duction from a point target is shown in Fig. 4. By
charge-conjugation invariance only the axial-vec-
tor current contributes at the Z° vertex, and the
second diagram just gives a factor of 2. By power
counting the loop appears to be linearly divergent,
but conservation of the two vector currents renders
it finite. However, as emjhasized by Adler,!? a
shift of integration may introduce a surface term.

qI,E* pl

(a) (b)

FIG. 4. One-photon exchange.
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The ambiguity is resolved by routing the loop mo-
mentum so as to give the photons Bose symmetry.
A second apparent divergence comes when £ = -2

-0, because of the infinite range of the interaction.

When the Z° mass is nonzero this is also elim-
inated by current conservation, because in the
photon frame one has

EAL=% (R +M?) AL~ kA=0 , (8.1)

so that A! must vanish as k2 -0.

A. Derivation of the amplitude

Combining Egs. (2.14), (2.15), and (2.20) we find
that the infinite-energy amplitude has the form

M, =75 Aledry - (3.2)

—J

R{w:fdﬁdﬁ’ﬁ(l—B-B')fdzwfdw_%‘g

X

CAHALAN
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Note that the dependence on the target mass can-
cels, indicating that our results are equivalent to
those for a fixed potential.

A/ can be written in terms of the VVA vertex
function'? R,,, as

A:=<_zl_;;<+zgn [~ €Rivp ], @3)

where e is the electric charge, g, is the axial cou-
pling constant appearing in Eq. (1.1), € is the
photon polarization vector (purely transverse since
d=0), and €* is the Z° polarization vector. In
writing down Ry, , we let

w,==-g,1-w,=8. (3°4)

Factoring B and B’ out of the denominators of the
lepton propagators, we can write

1

B B

(w_ —M +i£) (w-

_W%_thﬁﬂ-:%)[w_ - (i +22) _(_W-_E)’,ﬂﬁ“-_e_] ,

-B -8

(3.5)

where Ty, is the trace of the numerator factors and m;, is the lepton mass. Consider the contour integral
of w_. Since,y,2=0, the y, coupling of the exchanged photon eliminates two factors of w_y, in the numera-
tor, so only the poles contribute. The poles lie in the same half plane unless 8, 8’>0. Closing the contour

in the lower half plane picks out

o 2
w_ :M . (3.6)
B
Combining the two remaining denominator factors with a Feynman parameter x, we obtain
- : ’ ’ ! 2, ﬂ Ti+u
Riyy=-2m apdp’s(1-p-p) | dx | d*w (3.7)
0

[ = xBKY + (1 = %) B +m 7 — xBB'M* — i€]®

Note that x88’ >3, so when M?>(2m,)? the denominator can vanish. Therefore the vertex function has an

imaginary part due to the decay Z°-7*1".

Inserting the Z° polarization vectors into Eq. (3.3), the factor in square brackets has the form

Jr=- ¢ (Rl++E'.€* =Ry e*),

fi=¢€ (Ryy . M=Ry,,q""/M) ,

(3.8)

associated with transverse (7T) and longitudinal (L) Z° respectively. Only the longitudinal factor, which
involves R,,_ in the last term, has the ambiguous linear divergence mentioned above. This can be handled
with Adler’s “anomalous Ward identity,’'® expressed in the photon frame as

Ry q'"/M=Ry, (2m,/M) +8n%¢;,k'/M ,

(3.9)

where the first term is the “naive” divergence obtained by replacing y, by 2m;, and the second term is the

“anomaly.”

The numerators of the remaining terms in Eq. (3.8), T,,,and Ty, are evaluated in Appendix A. No

linear divergence appears, and letting
W=w+xpk,

we obtain

(3.10)
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fr=-21n'(4i)fdﬁdﬁ’ﬁ(l—B—B')foldxfdzw'ﬁ

o =2xBB [(ExK) &k - T K (E*x B)] 2, + [((8' = B)/B) (W72 +mP) + ((B' = B) x+1) xf] (EXEN) 2,
[“‘712 +x(1_x) ﬁZE‘Z +m,2—xﬂB’M2—i€]2 ’

(3.11)

B(= 2xBB' M?) (EXK/M)* %,

Yy t 2
fr==2mi(4) fdﬂdﬁ 5(1"3-3)1 d"fd w [%2+x(1 - ) Bk 2 +mi - xpBM? —i€)?

-¢R,, 27’"1- 8n2(Exk/M) %, -

(3.12)

The transverse integral in f; appears logarithmically divergent at the upper limit, but since the coeffi-
cient is antisymmetric in g and 8/, it integrates to zero. The logarithmic term from the lower limit can

be integrated by parts over x as follows:

1 1
-f dxIn( x(1 = %) B2k? +m? = xBB'm? —i€) = —In(m?2 - BB’ M2 =i€) + | dx
o 0

%(1 = 2x) B2k? - x BB’ M?
(1 = x) B2k? +m;? = xR’ M? ~ i€

’

and again the first term does not contribute by symmetry. After some algebra we find

1 —2x38’
fr=tee [ apagt ot - p- ) [ axp L

and

(3.13)
ExK) Ex ok — ER(E*XK) ], + xBRE(EXEX) 3.14
(1 - x) B2k +m? - xBB'M? — i€ e
_ AT AArhs
2xB8' M*(EXK/M)* %, -¢ Ruz—ml— 8n*(ExK/M) %,.  (3.15)

1
Je= a"zfdﬁdﬁ' o(1-4-#) fo AxB 1= 2) BPRE +my — 2B M —ic

These equations have a number of interesting
properties. They vanish when E-—O, as we have
seen from current conservation. Since €¥=-¢€_,
we find that Ay #2 in Eq. (3.14) and the polariza-
tion vectors can be replaced by —¢5,,, where p
and u’ are the photon and Z° helicities. This is
essentially the Primakoff effect'* and does not hold
for two-photon exchange. Finally, if we neglect
the lepton mass in Eq. (3.15) then as k2 -0 the
first term is canceled by the Adler anomaly, thus
verifying angular momentum conservation. Since
my/M is small for the known leptons, we examine
that limit in more detail.

B. Zero-lepton-mass helicity amplitudes
Taking the limit 7, — 0 in the last two equations
and canceling a factor x in numerator and denom-

inator, we can carry out the x integral trivially.
The result is

fr=8n%it,, [ dpdp o(1-p-p) (8 ~B)

xln(ﬁz-(iz/Mz)—ﬁﬁ'—ie) , (3.16)

M

fo=- 3112(5%)[ f dgdp’ 5(1 - g ) 23'-%42—2

xm( p2(k?/M?) - BB’ ~ ie>+1] ,

BB’
(3.17)

where In(x —i€) =In| x| +in6&(x). If we define

) k2 %

ifr,1=87" 73 fau <W> , (3.18)
then Eq. (3.2) becomes

. 8fica? g, k2
I, = - iwbyn 7 54 fi, (W) , (3.19)

where we have inserted the units and also set &2/
47 =a. The remaining integral in Eqs. (3.16) and
(3.17) gives the final results in the form

ﬂ(%){z’xjﬁv )-%3f0<—f4—22> . (3.21)
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FIG. 5. On-shell lepton pair in one-photon exchange.

The most striking result here is the rapid damp-
ing of the amplitude with increasing M2, This is
simply a result of current conservation and di-
mensional analysis, and therefore it is true for
multiphoton exchange as well. It is unfortunate
that even at infinite energy and forward angles we
cannot overcome this rapid damping.

As k?/M? -0 we see from Eq. (3.20) that

. 2
where we assume that the behavior is smooth as

| K |~ Emin=M?*/2w. The amplitude is purely imag~
inary in this limit and associated with the produc-
tion of the lepton pair as shown in Fig. 5. The
total cross section for pair production is given by
the imaginary part of the forward Delbriick am-
plitude!® and can be written as

o(1*17) 4%[111(2“’) 593]

m,

(3.22)

(3.23)

The characteristic logarithmic behavior which is
reflected in (3.22) is not affected by the outgoing
particle or, as we will see, by the number of pho-
tons exchanged. In Sec. IV we study the two-photon
case, generalizing the Delbrilick scattering by giv-
ing the final photon a mass.

(b)

+ k, and k, crossed
(d),(e),(f)

(c)

FIG. 6. Two-photon exchange.

CAHALAN
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IV. TWO-PHOTON EXCHANGE

In this section the high-energy limit of the am-
plitude represented by Fig. 6 is derived. The al-
gebra closely parallels the one-photon case. The
limit m,/M~ 0 is then taken and the results given
in a form like Eqs. (3.19)~(3.21), with additional
integrals over the relative transverse momenta of
the exchanged photons and a Feynman parameter.
A graph of the momentum transfer behavior of f,
obtained by numerical integration, is shown in
order to exhibit the characteristic logarithmic be-
havior.

A. Derivation of the amplitude

The two-photon amplitude has the form

1 mw

i =i
e 8(21r)“fdk ey A%k

‘k +i€ R,> +i€
XA!, B! (4.1)

according to the discussion of Sec. II, and where
k, +k,=k. Since k,, must be finite in the center-
of-mass system, the behavior in the standard
frames is

Rivs kL ~O(1/w) ,
ki, k{i ~O(w) .

(4.2)

B!’_ is the sum of two terms in which the target
emits &, before k,, and then &, before %, (labeled
“k, and k, crossed” in Fig. 6). According to Egs.
(2.6), (2.20), and (4.2), these two terms have the
form

17’)\" ‘y_(# - ”l +m) Y- u'," =261X'/m
B -k)-m?+ie =Rl +ie’

E')\'I 'y_(ﬁ—ﬂl+m) '}’_u'x’=26)‘)\l/m
(b =k, —m?® +ie kIl +ie

so that the sum is purely imaginary, giving
B! =~ 4mi(=ie)® 6(k!.) 6xr/m . (4.3)

The %/ integral is therefore trivial and Eq. (4.1)
becomes

E)n e O vrsvy 2(2 )4 6)\)‘ fd kl

’

1
£1 f dr!_AL, .
(4.4)

As in the one-photon exchange, current conser-
vation requires that A/, vanish as either k2 or k,?
vanishes. So when k=0, Eq. (4.4) is logarithmi-
cally divergent as Elz -0, which implies that I,
~In(k?) as expected. Current conservation also
implies that only the first diagram in Fig. 6 need
be evaluated. The second two are easily seen to
be only functions of 2, so if we call the contribu-
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tion from the first A(k,, k,) (symmetric in k, and Eq. (3.3) as
Kk,) then the total must have the form

A(E,Ez)fzf,—ji(—igv)[- ¢ [ abi-Ropy e,

[ arj_aL, =A, ;) -40,D (4.5)
. . . (4.6)
in order to satisfy current conservation.
The function A(k,, k,) can be written similarly to and with the notation of Eq. (3.4) we have
Tw 1
S i Rusvs= [dpap [aru faw. fan, Ty e T
.[ 828 (w__w +my +E><w__w +r:1 e
B B -B -8B
% 1
i W-kPm,? ie W +k)? +m,? i€l "
l:w_—k,_—J_B-,—’—+ =5 |:w_-kel_—(E2 +M"’)-( 3 + 3
(4.7)

The numerator here is independent of the minus components because y,2=0. The variables w_ and y_=w_
— k- decouple and their poles lie in the same half plane unless B, 8’>0. Closing each contour in the lower
half plane picks out

w. =(ﬁ2 +ml2)/ﬁ ’

4.8)

y_o=k2+M? +[(W +K,)® +m,2)/8. (

Using a Feynman parameter x to combine the two remaining denominators, we find
t T
!’ = \2 d ’ - /fdfdz - - il .

fdk‘ Ry = (= 2mi) f RAR'o(1-5-4) A WG+ B + M1 - x)R2 +m,° — xpp' M2 — i€]? * (4.9)
where

R=p'k,- gk, . (4.10)

This is a simple generalization of the one-photon expression, Eq. (3.7), and again it has an imaginary
part due to Z° decay when M2 >(2m,)%.

As before, we define the term in square brackets in Eq. (4.6) as f} or f/ for transverse or longitudinal
Z°. Since the vector current is conserved we have

R+(+u q" =0, (4.11)

so the second term of €,(q’) does not contribute to f;. The traces T,,, and T,,, are evaluated in Appendix
A, and letting

W=w'-aR, (4.12)
we obtain

-

£1 (R, K,) =8(2mp [ dpap o1 - 5 &)

xfl dxfdzw’ 488" x(1 = x) R-ER- & +[(1 = 288") %' 2 +m, % — x(1 — x) R?] €~ E*
0

%2 +x(1 - x)R® - xBB'M> — i€|? ’
(4.13)
' —8(2)2 P \__=2MBR'(B=p)xR-&
Fills, ) =8(2nP [ dpdg 61— p-p) [ dx [ atur o PURE B PN S, s (4.14)

The logarithmic divergence in f} will clearly cancel when the subtraction indicated by Eq. (4.5) is made.
The logarithm from the lower limit can be written as in Eq. (3.13) and the first term will not contribute
to Eq. (4.5). If we redefine Egs. (4.13) and (4.14) through

(gv/e) (a/m) ff',L =4(27)° Iz, (4.15)
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then the two-photon amplitude takes the form

M, =iwbypr e4f[dzk1/(2,,)z] (VE2) (V2 [1(k,, k,) -1(0,K)] ,

and the result of the w’ integral is

1%, &) =82 2 [ apap o(1 - - @)

ROBERT F. CAHALAN 9

(4.16)

% f’ dy 488" x(1 - ) R-ER-&* - 3 [R*(1 - 888" (x — 3)°) - BB'M*(1 - 288’ +4BB' x)] &+ &
0

i __& o ' 7_ Y !
1,(8,,%,)=-8 2 [ agag'o(1 - g B)fo dx o

These equations can now be directly compared
with the known result for "}e elastic and Delbriick
scattering.'® In the limit M—~0 and gy/e=1 the
longitudinal term vanishes and the transverse term
reproduces the known result. Then the i€ can be
dropped, so that I is purely real and the amplitude
is purely imaginary. In the present case we are
interested in the opposite limit M=, or equiva-
lently m; -~ 0.

B. Zero-lepton-mass helicity amplitudes

The limit m; -0 is straightforward except for the
two coefficients of €+€* in Eq. (4.17), which are
badly behaved as x~0. They involve

ﬁz - ﬁB’Mz

~£ dx x(l—x)ﬁz +m,2_xBBIM2_i€ ’ (4.19)

which diverges logarithmically when the lepton
mass vanishes. However, the divergence will be
canceled in Eq. (4.5). We extract the finite part

as follows. In the numerator of (4.19) we subtract
1/x times the denominator. Such a term does not
contribute to Eq. (4.5). After the subtraction (4.19)
becomes

1:(k, k)= 52 2 [ agag o1 - 5~ )

e,
X{zﬁﬁ,(ZR__e_E_e__g.g*)[l

-

—(1-28p") -2 ln(

@ ’ ’ ’ ’ R-€
14, B =82 2 [apag o(1 - - @) 28 (8- ) Bt 1n(

R? - 8B’ M? —ie)
- BBIMZ ’

W= AR a5 A i€ ,
- (4.17)
2MpR' (B-B") xR €
AR +m,? - xp M — i€ (4.18)
f Ya xR - (1/x)m,?
o AL =R +m® - PR M — i€
- ]1 dx . xﬁz
o (1 = %) R +m,® — xpR'M? — i€
tdx my?
_'£ X x(l—x)§2+mlz—xﬁﬁ'M2—i€ . (4.20)

In the first term of Eq. (4.20) the m,? in the de-
nominator can safely be neglected. After cancel-
ing out a factor of x in the numerator and denom-
inator, we can carry out the x integral trivially.
In the second term of Eq. (4.20) it can be shown
that, to O(m,;?), the x2R? in the denominator can
be dropped and the upper limit of the integral can
be extended to infinity. We then encounter an inte-
gral of the form ﬂ,"’ (dx/x) f(ax), where f(ax)
=m,;%/(ax +m,?) and a =R? — BB’ M?. Substituting
this second term into Eq. (4.5) and combining it
with a similar term from A(J, k), we can evaluate
the resulting form via the identity

fon-d—;[f(ax) —f(bx)]=[f(0)—f(°°)]1n<§>, (4.21)

which is valid whenever df/dx is continuous and
17 (dx/%) [ £(x) = f()] converges.

By the method outlined above, the x integration
in Egs. (4.17) and (4.18) can be done in the limit
m;~0 to give

. BB’ M? ln<R2 - BB'M? - ic >]

ﬁz - ﬁB,MZ

(4.22)

R? - gprM2 - z‘e)
’

- BB’ M? (4.23)
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where again In(x —i€) =In| x| +i7&(x). The second
term in Eq. (4.22) comes from the above identity
and turns out to be just the helicity-conserved
term.

If we now scale all the momenta by M, defining

-’21,2= M ’ K_K1+K2 (4.24)
and
- a - -
11’.L(1(19E2)=EeL ;' IAu(Ku %) , (4.25)

then the two-photon amplitude of Eq. (4.16) takes
the form

(4.26)
where

. 11 ..
Fa@- [ 4 77 7 oy T2) = 10,0, ]

(4.27)

Making the change of variables

210

180

150

120

B=:(1-a), (4.28)
we obtain
- - ! 4R? - (1 - a?) —ic
=1 d 2 <
I(#k, K,) 4_/;1 a(l+a?)lIn 1-a? ),
(4.29)
I,(k, % )-lfldota(l-C!Z)R:i@!q—.zg
1\%1y B2 4 -
4R? - (1 - a?) —ic
x1n< (l—a"’ >, (4.30)

2R-Z, R. &
2

1
I(k,% =lf da(l - a?
Ky, Kp)=1 . ( )—'R‘——

1-0? [4R%2-(1-a?)-ic
x[“ iR 1“( (1-32) )}

(4.31)
where now

2R=(1+a)%,-(1- )%, . (4.32)

1
%0 o Re(f?)
# Im(fo)
60 1 ] 1 Ll o
L I 2 3 45678910 ,
O -Re(fy)
30 ! . /4 Im(fy)
.——9' v: T T =t :%
10-2 10-! 10 10*2

|
Ikl
M

—

FIG. 7. Momentum transfer dependence of helicity-conserved two-photon exchange. The imaginary part of the ampli-

tude comes from the real part of f.
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FIG. 8. On-shell lepton pairs in two-photon exchange.

The three-dimensional integrals appearing in
these equations have been studied numerically, as
discussed in Appendix B. As k-0 only f} has the
logarithmic behavior and it is shown in Fig. 7. The
limiting form is

—fo-(16 - 3i)In (%2)~- 161n (21";)

me

-3iIn < M ) .
The real and imaginary parts are associated with
the one- and two-photon Bethe-Heitler pair pro-
duction, respectively, shown in Fig. 8. Of course
in the Delbriick case the second process cannot
occur and the first process leads to the cross sec-
tion of Eq. (3.23) by the optical theorem.

(4.33)

V. CONCLUSIONS AND EXTENSIONS

We have obtained the one- and two-photon ex-
change contributions to Z° photoproduction at high
energy. They have some simple properties which
should be emphasized. First of all, the amplitudes
factorize in the form

M=iwf (k2, M?) , (5.1)

where f is generally complex due to Z° decay, and
the lepton mass may be neglected. Second, al-
though f contains the singular Coulomb potential,
current conservation implies that the behavior is
softened to In(k?). As |k|-&,,, this becomes

In(w) and is associated with production of the lep-
ton pair. Then the dimensions of f require that it
vary inversely with M2, This makes the produc-
tion extremely rare, as we can see by considering
the pointlike cross sections.

A. Pointlike cross sections

The differential cross sections at high energy
have the form

do

—_ 2
i 1emu2 — | M2, (5.2)

9
Inserting the one- and two-photon exchange con-
tributions from Eqgs. (3.19) and (4.26) we have
do) 1|2hica? g k2|2
Sl e e
do?) 1|hcatg, 1, <E2> 2
A _ 1| 2CE by o = 5.4
dk? " w| M2 e w7 A\M? (5.4)

When the momentum transfer is small enough to
neglect form factors, the helicity is conserved
and the momentum-transfer dependence is simply
logarithmic and given to within a constant by (3.22)
and (4.33). The controlling behavior is therefore
the over-all 1/M*, By contrast, in Delbriick scat-
tering it is the lepton mass which provides the
scale for the cross section. Then when |k|<m,,
where m, is the electron mass, 5X107* GeV, we
have

_mb_
GeV?’
If gy ,4/€~O(1) then the Z° photoproduction is sup-
pressed relative to the Delbriick scattering by a
factor [m,2/M?]? ~107*2 for vector coupling and
10712 /0?2~ 1078 for axial-vector coupling.

In the present case, however, the Z° mass also
provides the scale of momentum transfer. We are
therefore led to consider values of k? large on the
hadronic scale in the hope that summing over final
states of the nucleus may not greatly decrease the
cross sections. The integrated cross sections are

dou k2\do,y,
aAu=J- i dk“ sz d(ﬁl—"’) ak2 ’

[} (]

do hica®\?
==, (Delbriick “‘(—) ~ 5.5
dk? ( ) mez ( )

(5.6)

which fall off like 1/M2, In the helicity-conserved

case we find!?

147 g /e) 2
(1) 2 5A
o{P=Zr <2h‘ 4,

=-5.09(gA/ e)zx 107 ub, 5.7)

o@=1. 17(gv/e> X107 pb, (5.8)

where Mis in GeV.'® Of course in the absence of
form factors these results should not be taken too
seriously.

B. Z° decay

For any decay of the Z° into much smaller mass-
es we expect a width on the order of

I'~«M~10-1000 MeV. (5.9)

The lifetime is therefore extremely short, and all
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possible backgrounds to a particular decay mode
must be considered.

In terms of the purely electromagnetic produc-
tion considered here, the obvious decay mode is

Zo"u+l-1_. (510)
The Bethe-Heitler pair production will occur si-
multaneously, so we must consider the square of
terms like those of Fig. 9. The lowest-order term
produces a charge-symmetric pair. It interferes
with the second Born contribution to produce an
asymmetry at the level of a*. This has been stud-
ied in the case of wide-angle electron pairs and
momentum transfers to the nucleus small enough
to neglect incoherent effects.'® If g,/e~0(1) (and
it may be larger) term (c) of Fig. 9 will produce
an asymmetry at the same level of a. Its depen-
dence on momentum transfer is presently being
studied.

C. Multiphoton and Z° exchange

The results of this work can easily be general-
ized to include the multiphoton exchange of Fig. 2
with a pointlike target. The analysis of Chang and
Ma® applies unchanged. Defining the two-dimen-
sional Fourier-Bessel transformation

F(B):f (‘;,j;];z T BR(R),

(5.11)
one obtains the impact-parameter representation
M (B)=iwd debldzbz(e‘x@-gx)-*x(‘-‘?z)_l)

x[1(B,,0,)-14(b,,b,)]. (5.12)

Here x(b) is the transform of the “potential”

(a) (b)
(c) (d)

FIG. 9. Contributions to pair production.

(5.13)

and 1(b,,5,) and I (b,,b,) are the transforms of
the lepton loop factors of Fig. 6(a), with vector
and axial-vector coupling, respectively.

Applying charge conjugation to Fig. 6 (a) shows
that the scalar loop is symmetric in %, and %,,
while the pseudoscalar loop is antisymmetric.
Therefore

1(b,,b,)=1(b,,b,),
(5.14)

15(.61, 62)= _15(.62; 51) ’

so that in Eq. (5.12) the coefficient of I must be
even in x(b-b,)-x(b-b,) and the coefficient of I
must be odd. This is just Furry’s theorem, which
implies that an even number of photons are ex-
changed to produce a vector Z° and an odd num-
ber to produce an axial-vector Z°.

Expanding the exponential in Eq. (5.12), the first
term is given by

a’k_ i %

I ,=twdy (2—1r)—2€

x(‘—;—) [14(8, 014K, O);
(5.15)

current conservation for k, implies that I 5(5, ﬁ)
can be evaluated from the loop in Fig. 6(b) [see
discussion above Eq. (4.5)], and similarly current
conservation for k, implies that 7,(k, 0) can be
evaluated from Fig. 6(c). The factors of v, can
then be combined and (using g+8’=1) the contri-
butions of Fig. 4 are reproduced. In other words,
we have

-ie[I(0, %) -1,(k,0)]=41, (5.16)
so that Eq. (5.15) reproduces Eq. (3.2).

More generally, we may assume that the Z° in-
teracts with the target with both vector and axial-
vector couplings g, and g4. In the axial case we
have

By vsl i = =By /m, (5.17)
so that the target helicity remains conserved.
The eikonal picture is preserved under inclusion

of multi-Z° exchange. The only modification is in
the potential, which becomes

V(E).z _g_ (gz_gd'yi)l(glv—giﬂys)z .

2 k22 (5.18)
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Here the superscripts 1 and 2 denote the ¥ ma-
trices for the photon and target, respectively.
Note that outside of the scaling region the Z°-ex-
change effect is negligible due to the additional
1/M2. The effect of Z° exchange on Delbx;t'iclj scat-
tering is just given by setting M?=0 in I (b,, b,).

The Z° may well be expected to have significant
interactions with hadrons, just as its massless
partner does. Rather than photon exchange then,
we should consider more general Compton-type
mechanisms. The eikonal picture may be useful
here, and may be applied to other products of
high-energy photoproduction.
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APPENDIX A
The traces used in Secs. III and IV of the text
are evaluated here. They have the form
Tiau=Tr[@b+d +my Wem, )y, @/ -F+m;) v5],
(A1)
Tygap=Tr [y, @/ +d+m,) v, +m,)

X vy =Ky +my) v, f +4 + KB, +m))],

(A2)

J

W2+m 2

28

Ti+;=

where k=k, +k,, u=+,j, and 4,j=1,2. From the
discussion in the text we also have k,, k,,,q=0,
and we employ the notation
w,=-p,
+=f 43)
g, +rw,=1-p'=8.
Repeated use of Egs. (2.6) will be made.
Equation (A1) can be simplified by writing
Vs =% (V=Ya =y +¥-) Y125 ad)
Y1252 Y172,
and it is easily shown that
Try; vi,vy) =4i€y, . (A5)
In this notation we find
Tiyp =Tr [(14/'*'4"'7";)7’4 ("%B'Y—';"V’:; +m,)
X% 38" Y= (w-K) Y +m )y 7]
(a6)

When p=+ this becomes

Tyoy =28' Tr[@f +4+my) v, (=38 =Wy +m ) % o]
=283 BTr [v—y, (=W 7 +m ) 7.0,
—3 B8 Tr [(-We7 +my) v v_vam,]}
Now y, must dot into y., giving
T;,.=8iB ;,w® . (A7)

Putting p = j- into Eq. (A6) and expanding the first
factor gives

Tr 47 (8% Wy 1+ 1 BTr [y vy (W7 +m,) v, (W-K)*7 +m )7,y ]

+ Tr{(-wey +m) v [~ 5 B' Yy @=R)7 +m )+ (=W 7 +m,) v, 3 By T vy }

Again y, must dot into y_, so that

Blz
B

T‘-!-j = (;2 +m12)

Tr [y %oy ] +BTr [yy (~WeF-m M= @ =K)* 7 +m )1 1+ ' Tr (w7 +m,) v, (<K 7) %27]

= (W2 +m,;2) ((BZ/B)-B) Tr [vs 1oy ]+ Tr[(—By Wy +B' Wern)ky vyl -

Commuting the y; to the left in the last term and
using B+8’=1, we obtain

B'-B
B

-Tr [Y{E';E';Vlz 79] . (A8)

(W2 +m %) €, ~2B"w,€,, k“]

T

Finally, putting
w=w’+xpk (A9)

into Eqs. (A7) and (A8) and dropping terms linear
in w’, we obtain
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Tipa=4i(2xBB'€; k%), (A10)
Ty =4i|:¥ W” +m;?)ey,
- 2xBB'ky€, k']
+4ie, [(8"-B) x+ 1] xpR*. (A11)

Now we evaluate Eq. (A2). When pu=+ we obtain
Ty ies=—4B8' Tr [ + 4 +m;) v, & +m;) 7, ]
=16p8’ (B'-Bhw; .
When pu=j in Eq. (A2) we write it as
Tysay =Trlv. Ly v. 8]
=3Tr[(y, & =L v.) s B, -R;v,)], (A13)

(A12)

where the last equality follows from y.2=0. In the
present case Eq. (A13) involves combinations of
the form

7’+A/'Y‘B-AY‘EY+=2A+743+2B+A/74- (A14)

The coefficient of y. cancels, and v, can also be
dropped since it has nothing to dot into. We there-
fore have

Tyiay =2Tr{(By (=W+7 +m;) =B (=W 7-m;)¥,)
X[-B'y,(-(w +k,) 7 +m,)
+B(=(W-K,)*7-m,)v,1}
=2Tr{(r(-w+7 +m,) +28'w,)

x[28'(w + R +Bk), +(-(W +R)¥ +m,) %1},

(A15)
where
ﬁ=5’ﬁz‘ﬂ’{1 . A16)
Finally, putting
w=w’-xR (A17)

into Egs. (A12) and (A15) and dropping terms linear
in w’, we obtain

T, 4s+=—16B8B'(8'-B)xR, , (A18)
Tits=8 {[(1-28p"w"" +m12—x(1—x)§2] 6y
+ 4B’ x(1-x)R R, ~2pB'(B'~B)X R Ry} .
(A19)
APPENDIX B

This appendix gives a brief description of the
numerical evaluation of the f4, (k) given in Eqs.
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FIG. 10. The transverse-momentum plane.

(4.27)-(4.31). The integrand diverges when &,
X,, or the argument of the logarithm vanishes.
The logarithm will be discussed first since it is
the easiest to handle.

The logarithmic divergence at @ =x1 is canceled
in I, and I, by the 1-a?, and in the case of I, we
show below that the integral can be done analyt-
ically because of the simple R dependence. With
* along the 1 axis and calling ¢ the angle between
kandk,, as in Fig. 10, we can factor the argu-
ment of the logarithm as follows:

4R2-(1-02)= (1+K®)(a + o, )a + al) , (B1)
where
a,=6zxy, (B2)
_ k(k-2k cos ¢)
L Sy (B3)
4‘; 2 1/2
y=11-8| [1- (1__1_+x2)"(1—5)2]

_ 4(,‘(_"’( )z ] 1/2
=]1+6] [1- e I (B4)
and we use the notation » = |T| for the transverse
vectors. The divergence problems at a =-~a; can
be simply eliminated by writing the logarithm as
a sum and subtracting, from the coefficient of each
log, the coefficient evaluated at the respective
divergent point. At the same time the two terms
can be added on with the logarithm integrated an-
alytically.

The k, integral is simplified by two properties
of the integrand: It is even in ¢ and symmetric
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in%, and k,. Therefore, in the transverse-mo-
mentum plane shown in Fig. 10 we need only
integrate above the 1 axis and to the left of the line
K,=K,, in the shaded region of Fig. 10, and at the
same time dropping the § in Eqs. (4.29)-(4.31).
The point Fz 0 is thereby avoided and we need only
worry about the divergence atk k,=0. [The variable
I —x1 +2x may seem more convenient since the
integrand is even in k’, but the point "1 0 is nu-
merically easier to handle if the origin is chosen
there.]

As k-0 we have

Fuu f s

which is logarithmically divergent at the lower
limit due to the assumption k >>M/w, as discussed
in the text. Examining the integrand in more de-
tail, we can see from Eq. (4.32) that when « is
small ﬁ~—x1, independent of a. Then the inte-

fd¢lg,4(i,f;)—IA ®.5) ’

RelL (i}, k,) 1,0 %) = -

+Re(a, [1+3(Re(a,)) 2]1n

k% Ink?

- 4201+K2F + 1-47) = 1oy

grand of ], is odd in a and therefore 1ntegrates to
zero. The integrand of 7, has the factor Re€Ree*
~(cos¢ +ising)?, so f, vamshes by the angular
integration when k-0. So we verify angular mo-
mentum conservation and f}~In(x?). Evaluating
f? for small values of ¥ is much simplified by the
fact that the a integration can be performed ana-
lytically.

Factoring the logarithm as in Eq. (B1), we have

Io(’?p.’? 2)_10(6’;)

=fll da(1+a®){[In|a +a, | +In|a +a_|

+im0 (@ +6)*-y?) ] ~(k, =0},

(B5)
where we have dropped the ; as mentioned above.

The integral of the logarithms can eventually be
written as

& m [(1-k?)k cosp—k,) —2k,K* sin¢] + & Infk %k,?)

+Re(a)[1+3(Re(a ) ?]ln |—

1+a '

+ 2Im(a, )1+ (Re(a,)) 2-3(Im (a, ) ?] l:ta.n"1 <M>+ tan"( —liG(g-'*l>:]

-2Re(a,)[Im(a,)]*In

1-0,

In evaluating the imaginary part it is convenient
to write 6(x)=1-6(-x), and letting a@’=a +5, we
have

IIn[IOﬁu‘Ez)_IO(U,;)]

=—1rf1+6 da’[1+(a’ -8)*] 6(y*~a ) ,=0)
=(1-8)
(B7)

In the second term (k,=0) we have y =1-06=1/1+«?
<1+8. So we just replace the upper limit by 1-6
and drop the 6 function. The first term vanishes
unless Y>> 0 and since 6>0 in the shaded region of
Fig. 10 we have in this case —(1-06)<-y<y<1+96
so that Eq. (B7) becomes

l+a, )

Im(a,) Im(a+)
(B6)
nn[lo(kp;z)—lo(b;;)]
Y
=—1r{ 9(y=)f da'[1+(a’-06)]
{ -7
1/(1+ k2) 2
—f da'[1+<a'— K22>:|
-1/(1+K2) 1+k
1 K* +3 |
= 2 2 1,27 _
= 2"{9(7 )7[1"’5 +37’] 1+12 [:1 (1+K2)2]}
(B8)
Now consider the ?1 integral for f§. It is clear

from Eq. (4.29) that as k, -0,

Lk, %,)-L(8,k) ~2kK, cosp C(k?) +0O(x.2),  (B9)
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so the angular integral should vanish near the
origin of Fig. 10. However, the numerical error
in the ¢ integral is multiplied by 1/k%. In order to

J

K /2 L K/2 T
fo(K)=f Ak, j; dqb=;-17 2KK, COSP C(K2)+f —dxﬁlf d¢7(1—2[Io(itl,ﬁz)—lo(b,ﬁ)—zxklcoscp Cc(x?)]
2 0 1 0 2

() Ky

00

v a0 [T dgtr IO

K /2 Ky mi

The first term here integrates to

-7 C(k®)In@) (B11)

and taking k,~0 in Egs. (B6) and (B8) eventually
gives

=1
(1+k2)?

1+
1+

Cue) = [1-nz+ ”;(mz—m)]. (B12)

The integrand of the second term in Eq. (B10)
vanishes as k;~0. In the last term (k,>«/2) the
angular integral starts at

(B13)

make the integrand vanish explicitly near the ori-
gin, we can divide the integral into k,< k/2 and
k,>k/2, and write

(B10)

r

and we let

K1=%K+CM_Lx (B14)
We integrate x from 0 to 1 by Simpson’s rule with
equally spaced points, choosing the variable CM
for each value of k to equalize the k, integral on
either side of x=3. For k,<k/2 we have

Ky =(Kk/2)x. (B15)

Double precision was employed in order to effect
the necessary cancellations for small x, with well-
determined results well into the logarithmic re-
gion as shown in Fig. 7.
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A reported bound state of pn at —~83 MeV is compared with calculations on the boundary-
condition model (BCM) for NN scattering. The most probable orbital assignment for the
bound state appears to be 35, or !P,, but it is not possible to distinguish between these two
assignments by binding energies alone. At least half a dozen other bound states are pre-
dicted. The imaginary part of the core boundary condition is quite small in the present
case. Comparison with published calculations using the Bryan-Phillips static (BPS) potential
shows that the latter has a somewhat richer spectrum and includes '"’Di as equally probable
orbital for the observed state. The BCM and BPS potentials differ substantially in their
spin-isospin dependence, but distinguishing data do not now exist.

A recent report! of a bound pr state at B=-E=83
MeV with I' <8 MeV encourages the hope that other
such lightly bound states may be found. Their
study has a twofold interest: For B <300 MeV,
they should? provide further insight into meson-
exchange NN potentials, which have given fits to
scattering data over a comparable energy range
and can be related to NN potentials mainly by re-
versing the signs of appropriate terms. Second,
the comparison of calculation and experiment may
ultimately indicate the extent to which bosons can
be described as NN bound states—at least in the
region around mg=m y+myx=~1877 MeV.

I. BCM POTENTIAL

The relatively small values of B and I'" quoted
above suggest that it should be possible to inter-
pret this state mainly in terms of an NN potential
at large range (i.e., 720.5 F). We report here
some calculations using an NN potential taken from
the boundary-condition model® (BCM) for NN in-
teractions. General parameters are as in Table
III of Ref. 3, with the following modifications:

2,

(i) sign changes of g?=g,% and N?=%g %

(ii) no tensor coupling of states with different L,
although diagonal tensor terms are retained,

(iii) variation of g 2 over the range 0 to 30 and

free variation of the boundary parameter f.

The sign changes are those associated with
N-~N: (=1)°, where G is the G parity of the ex-
changed meson combination. Tensor coupling is
omitted because we seek only first approximations
to states with binding energies of order 100 MeV,
so that additional binding from tensor mixing can
generally be neglected. The situation is the op-
posite of the deuteron, where the tensor force
makes the difference between a bound and an un-
bound state. The diagonal tensor terms were re-
tained to give some qualitative J splitting for
fixed L, since Ref. 3 does not include a spin-or-
bit potential. The BCM calculations use g ?=3,
which is smaller than that given by most meson
potential fits to the NN data or by direct w pro-
duction measurements.* A range 0<g ?< 30 was
therefore searched. There is no ¢ priori reason
to expect boundary condition values f to be identi-
cal for NN and NN states with the same LSJT;
in any case, half the states present in the NN sys-
tem are excluded from NN by the Pauli principle.
As a first approximation, the f values are taken
entirely real, since for a narrow resonance the
correction to the binding energy will be of order
(T'/2E)?, which is <10~2 in the present case.!

The two most immediate assignments for the
observed state with this potential are 35, and 'P,.



